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Abstract

Within the realm of contact potentials, the key structures intrinsic of
nonperturbative renormalization of T-matrices are unraveled using rigorous
solutions and an inverse form of the algebraic Lippmann–Schwinger equation.
The intrinsic mismatches between effective field theory power counting and
nonperturbative divergence structures are shown for the first time to preclude
the conventional counterterm algorithm from working in the renormalization
of EFT for NN scattering in nonperturbative regimes.

PACS numbers: 11.10.Gh, 11.55.−m, 13.75.Cs

1. Introduction

The effective field theory (EFT) approach to nucleon systems has been producing many
encouraging results [1], pointing toward a promising field-theoretical framework for nuclear
forces. In the course of this evidence has been accumulated that the conventional
renormalization programs cease to apply in a straightforward manner for such nonperturbative
problems, along with debates concerning this issue [2, 3]. This is not totally unexpected as
the issue is nonperturbative which may pervert the wisdom established within perturbative
frameworks. For example, as noted in [4], perturbative analysis of counterterms [5] can be
misleading; therefore, ‘new theoretical ideas’ for nonperturbative treatment of EFT are needed.
The nonperturbative aspects of this issue are also emphasized in [6].

Actually, the difficulties encountered so far even brought about some doubts concerning
the validity of the EFT approach to the nuclear systems. In our view, it is natural to think
of a field-theoretical approach to nuclear systems as an important advancement, while the
difficulties imply that such a treatment has not been fully accomplished yet. Therefore,
it is important to unravel hidden structures and notions underlying the nonperturbative
renormalization of EFT for nucleon–nucleon (NN) interactions. For this purpose, we will
work with contact potentials or pionless EFT to obtain rigorous solutions that could make
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things transparent. Here, we recall that our main purpose here is not to reproduce the well-
known results about pionless EFT in the literature, say [5, 7], but to explore the nonperturbative
properties or structures that should be generally useful for nonperturbative renormalization of
both pionless and pionful EFTs, and even other effective theories.

2. Parametrization and rigorous solutions

The setup is as follows: the potentials for NN scattering are first systematically constructed
using chiral perturbation theory (χPT) up to some chiral order � and then resummed through
Lippmann–Schwinger equations (LSEs) to obtain the T-matrices [8]. In the case of contact
potentials, the LSEs could be turned into algebraic ones using the following trick or ansatz [9,
10] (we consider an uncoupled partial wave channel L for simplicity):

VL(q, q ′) = qLq ′L ∑
i,j=0,1,2,...

λij q
2iq ′2j = qLq ′LUT (q2)λU(q ′2), (1)

TL(q, q ′) = qLq ′L ∑
i,j=0,1,2,...

τij q
2iq ′2j = qLq ′LUT (q2)τU(q ′2), (2)

with q, q ′ being the external momenta and UT (q2) ≡ (1, q2, q4, . . .). Here λ is energy
independent while τ is energy dependent1. As VL is truncated at a finite order � according to
the EFT power counting, we have the following constraints:

λij = 0, ∀ i, j : i + j > �/2 − L. (3)

This constraint will prove to be crucial. The algebraic LSE for the channel L now reads

τ(E) = λ + λ ◦ I(E) ◦ τ(E), (4)

with

I(E) ≡ (Iij (E)), Iij (E) ≡
∫

d3k

(2π)3

k2(i+j)

E − k2/M + iε
, i, j = 0, 1, 2, . . . . (5)

So, the renormalization of Ts boils down to the renormalization of τ s as U(q2) or UT (q2) is not
subject to renormalization at all. Our analysis here is also illuminating for the more realistic
cases with pion exchanges, as the LSE there is still dominated by power-like divergences:
V (q, q ′, . . .) ∼ ∑

qαq ′β when q, q ′ → ∞. We note in passing that the above theoretical
setup may also be applied to other problems dominated by singular short-range interactions.

Now we parametrize the divergent integrals [Iij (E)] in the following general manner:
Iij (E) ≡ ∑i+j

m=1 J2m+1p
2(n−m) − I0p

2(i+j), where p = √
ME and I0 ≡ J0 + i

Mp

4π
and the

arbitrary parameters J0 and J2m+1 (m = 1, 2, . . .) parametrize any sensible regularization/

renormalization scheme. Generically, J0 and J2m+1 should be independent of energy. Then
I(E) takes the following form in 1S0 channel (L = 0):

I(E) ≡ −I0U(p2)UT (p2) + J3�U1(p
2) + J5�U2(p

2) + · · · , (6)

with

�U1(p
2) ≡ 1

p2

∫ p2

0
dt

d[U(t)UT (t)]

dt
, �Un+1(p

2) ≡ 1

p2

∫ p2

0
dt

d[�Un(t)]

dt
, n � 1.

(7)

1 It is known that energy dependence in the potentials could be removed through unitary transformations, see e.g.
[11].
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While for L � 1, we have

I(E) = (−I0p
2L + J3p

2L−2 + · · · + J2L+1)U(p2)UT (p2)

+ J2L+3�U1(p
2) + J2L+5�U2(p

2) + · · · . (8)

Obviously, any sensible prescription could be readily reproduced by assigning appropriate
values to J···.

Some remarks are in order: first, all the divergent integrals involved assemble into the
matrix I(E) of finite rank, or finitely many divergences are to be treated. This ‘finiteness’
should be able to substantiate the nonperturbative renormalization of T. Second, the parameters
[J···] in I(E) are nonperturbative and irreducible in the sense that they will appear as basic
parameters in the compact form of T. Third, J0 is very special as it always appears together
with iMp

4π
in each entry of I(E) while [J2m+1,m > 0] do not.

The algebraic LSE could now be readily solved (the energy dependence in τ and I will
be omitted below):

τ = (1 − λ ◦ I◦)−1λ = λ(1 − ◦I ◦ λ)−1. (9)

Then the on-shell T for the channel L reads [9] (from now on we use [C···] to denote [λ···])

1

TL

≡ 1

TL(q, q ′)

∣∣∣∣
q=q ′=p

= I0 +
NL([C···], [J2m+1], p2)

DL([C···], [J2m+1], p2)p2L
, (10)

where NL and DL are the polynomials in terms of real parameters: the contact couplings
[C···], [J2m+1,m > 0] and p2. While for the coupled channels (3LJ −3L′

J , L = J − 1,

L′ = J + 1), one could find the following [12]:

T−1
J = I0

(
1 0
0 1

)
+

⎛
⎜⎜⎝

NL,L

DL,Lp2L
,

−NL,L′

DL,L′p2J

−NL,L′

DL,L′p2J
,

NL′,L′

DL′,L′p2L′

⎞
⎟⎟⎠ . (11)

Again [N···,D···] are the real polynomials in terms of [C···], [J2m+1,m > 0] and p2. Note that
such T-matrices are automatically unitary.

3. Renormalization of effective field theories in nonperturbative regimes

In the following, it suffices to mainly work with the uncoupled channels for unraveling the novel
features of renormalization that elude the conventional perturbative scenario and wisdom.

3.1. On-shell cases

First, let us consider the on-shell case. The on-shell T-matrices given in equations (10) and
(11) exhibit the following important features worth emphasis [9, 12, 13]: (1) first, the same
complex parameter I0 appears in all channels in the same isolated position in 1/T or T−1,
i.e. I0 is ‘decoupled’ from [C···] and [J2m+1,m > 0] in every channel2. (2) Second, as is
already noted above, only finitely many irreducible divergences [J···] enter the game. That is,
Rank(I) < ∞.

Since the p-dependence of the on-shell T-matrices is physical, the prescription variations
(i.e. variations in [J···]) must be compensated for by that of the couplings. This is
nothing else but the principle of RG invariance; then appropriate combinations of [N···]
2 The rigorous proof of this point for the 1S0 channel has been given in [9], which could be generalized to higher
channels.
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and [D···] must be RG invariants. Moreover, the isolation of I0 in all T −1’s makes it
alone an RG invariant parameter to be physically determined [9, 12, 13]. Therefore, in
the nonperturbative regime, J0 becomes a universal physical scale in the low energy NN

scattering. This is not a bizarre event: in the Wilsonian approach, the nontrivial fixed-
point solution [14] just equals the negative inverse of J0 computed in the cut-off scheme:
(V̂0(p))−1 = M

2π2

(−
 + p

2 ln 
+p


−p

) = −J0(p,
) = −Re(I0;
). There is only one exception

at leading order in 1S0 where J0 mixes with 1/C0 [5].
There are also some cases at lower orders where some divergences in [J2m+1,m 
= 0]

might be absorbed into the couplings. For example, at � = 2, the inverse on-shell T for 1S0

[10] reads
1

T
= I0 +

N0

D0;0 + D0;1p2
, (12)

with

N0 = (1 − C2J3)
2, D0;0 = C0 + C2

2J5, D0;1 = C2(2 − C2J3). (13)

It could be made finite by requiring D0;0
N0

and D0;1
N0

to be finite constants: 1
T

= I0 + 1
c0+2c2p2 . The

solutions are quite sophisticated [9],

C
(±)
2 = J−1

3 (1 ± (1 + 2c2J3)
−1/2),

C
(±)
0 = c0

1 + 2c2J3
− J5

J 2
3

(1 ± (1 + 2c2J3)
−1/2)2.

(14)

However, there is no way to subtract the divergence in J0 with such sophisticated counterterms;
thus, the counterterm algorithm fails here.

Things get worse at higher orders. For example, at � = 4 for 1S0, we have [9]
1

T
= I0 +

N0 + N1p
2 + N2p

4

D0 + D1p2 + D2p4 + D3p6
(15)

with N2 = C2
4J

2
3 ,D3 = −C2

4J3, where it is simply impossible to renormalize N2 and D3 with
counterterms from couplings at the same time as N2/D3 = −J3 contains a divergence! This
status is generically true at higher orders, regardless of channels. Then, in order to obtain
finite results, we have to go beyond the counterterms from couplings. All these points hint to
us about something unprecedented. To unravel them, we turn to the off-shell case.

3.2. Off-shell cases

As already pointed out above, it suffices to consider the renormalization of τ . To expose
the most crucial nonperturbative structures, let us turn equation (9) into the following inverse
form:

τ−1 = λ−1 − I, (16)

in terms of which the unitarity τ−1 − (τ †)−1 = iMp

2π
U(p)UT (p) is obviously not affected by

renormalization at all. Since the p-dependence of T is physical, so is it for τ . Thus τ must be
finite and prescription-independent. Then equation (16) tells us that the renormalization of τ

ultimately reduces to the removal of divergences in I in such a manner that the combination
λ−1 − I is RG invariant or physical.

At first sight, this seems trivial as one could let λ−1 absorb all the divergences, i.e.
counterterms from λ−1 are at work. Unfortunately, this is not true due to the following two
intrinsic mismatches between λ−1 and I: (i) λ−1 is constrained as follows due to the truncation
constraint (3):

(λ−1)ij = 0, ∀ i, j : i + j � �/2 − L, (17)

while I is free from such constraints; (ii) I is energy dependent while λ−1 is not.
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Let us elaborate. According to the EFT power counting, the counterterms must also
be constrained by equation (17). Then there is no counterterm for the entries Iij where
(λ−1)ij = 0 to subtract the divergences there, that is, the counterterm algorithm could not
perform sufficient subtractions. For example, for 1S0 at � = 2, we have

λ =
(

C0 C2

C2 0

)
⇒ λ−1 =

(
0 C−1

2

C−1
2 −C0C

−2
2

)
. (18)

In the meantime,

I =
(

−I0 J3 − I0p
2

J3 − I0p
2 J5 + J3p

2 − I0p
4

)
. (19)

It is obvious that the divergence in I0,0 (i.e. in J0) could in no way be subtracted by counterterms
from (λ−1)0,0, which is zero as required by the consistent EFT power counting. There is no
sensible way within nonperturbative regimes to remove such inherent mismatches between the
EFT power counting and the divergence ‘configuration’; hence, the counterterms from EFT
couplings could not work here. This can be seen as follows: suppose we introduce higher
order terms in the potential so that the mismatch is gone, for the example considered above,
it means λ1,1 
= 0 or the term ∼q2q ′2 is included and hence (λ−1)0,0 
= 0, then the general
principle of EFT power counting is broken, according to which terms ∼q4 and ∼q ′4 should
also be included, which means λ2,0 = λ0,2 
= 0. It will not help by including λ2,0 and λ0,2

as then λ and hence I will be enlarged, and the mismatch will persist between the enlarged
λ−1 and I, unless one ‘removes’ the truncation itself, which is actually impossible in any EFT
approach.

It will also not help even if one ignores the EFT power counting in constructing
counterterms, since equation (16) means the counterterms would necessarily develop energy
dependence as the divergences in I are energy dependent, which is theoretically unfavorable.
This is due to the fact that the ‘nonperturbative’ counterterms introduced through λ−1 would
lead to non-polynomial energy dependence in the local couplings, that is, the operators that are
‘nonlocal’ in time, not the ‘local’ ones that are allowed within a contact potential approach.
In other words, even if one works with an energy-dependent version of the potentials (or
operators ‘local’ in time), there still may appear mismatches between the inverse λ−1, which
is now non-polynomial in terms of energy, and the integrals I, which are polynomials in terms
of energy. Therefore, such choices could not remove the mismatches unraveled; actually, it
leads to new serious problems. As the mismatches only originated from the nonperturbative
structures of the divergences involved, we suspect that they may also persist in the more realistic
cases with nonlocal potentials, especially for the cases with pion exchanges that interest most
practitioners in the EFT approach to nuclear forces. Of course, definite conclusions are not
available before rigorous solutions of such cases are available.

At this stage, we note that there is an exception at leading order (� = 0) where
λ = C0, I = −I0 and the mismatches between λ−1 and I are gone. Since the divergence
status is not altered after one-pion exchange is included, this could explain why the counterterm
algorithm works in such cases [2, 15, 16].

The intrinsic relations between EFT power counting and nonperturbative structures of
divergences naturally led us to conclude that, beyond leading order, it is generally impossible
to implement the counterterms from couplings in nonperturbative regimes. However, this is
not equivalent to the failure of renormalization itself. In this connection, we recall that the
ultimate goal of renormalization is to obtain finite amplitudes generated with EFT propagators
and vertices, not how the divergences are removed, and that the most crucial step is to fix the
undetermined constants generated in any renormalization procedure by imposing appropriate
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boundary conditions. Due to the difficulties described above, one is naturally led to the
subtraction directly performed on the integrals in I, or through other means that could yield
equivalent effects. By whatever means, the final outcome is that, due to the energy or
p-dependence of I (cf equation (6) or (8)), at least the constant J0 (which is energy- or p-
independent) could no longer mix with the couplings in λ−1 and therefore must be physically
determined through imposition of appropriate boundary conditions. Thus the two mismatches
between λ−1 and I lead to the RG invariance of J0. In fact, as long as a J2m+1(m > 0) appears
as a coefficient of a p-dependent matrix U(p2)UT (p2) or �Un(p

2)(n � 1), it must also be
physically determined. Thus we reproduced the same conclusion as obtained in the on-shell
case.

4. Discussions and summary

Thus through the above analysis within the realm of contact potentials or EFT( 
π), we
showed that the conventional counterterm algorithm and the associated wisdom could not
work beyond the leading order due to the intrinsic relations between EFT power counting
and nonperturbative divergences. Then one must resort to other approaches beyond the
counterterm algorithm. Here, we note that the counterterm algorithm refers to the construction
of counterterms from EFT vertices or potentials, not the subtraction in general sense. Thus, in
the treatments of NN scattering at higher orders where rigorous and explicit parametrization
of the divergences is impossible and counterterms could not work, keeping the cut-off finite
(which is one kind of subtraction already) and properly fine-tuning it together with other
contact couplings is a choice that is pragmatic and reasonable [17, 18]. Or, one may choose
some ‘perturbative’ treatment of the potentials beyond leading order as long as the convergence
is assured [19]. For further progress, the nonperturbative properties and mismatches revealed
here should be illuminating and hence carefully taken into account.

Before closing our presentation, let us expose another interesting point associated with
the inverse formalism that is intrinsically nonperturbative: the EFT power counting expressed
in terms of λ−1 seems somewhat ‘unusual’ due to the constraint (17). There are some entries
that jump to zero and deviate from the seemingly well-ordered sequence of nonzero entries.
This is again due to the truncation of potential which is natural from the EFT side. Further
exploration of this point will be pursued in the future.

In summary, we provided a somewhat transparent analysis of the renormalization of EFT
in nonperturbative regimes within the context of contact potentials or pionless EFT without
introducing any deformation of the standard field-theoretical framework. In a formulation that
makes the main structural issues lucid and obvious, it was shown for the first time that the
intrinsic mismatches between EFT power counting and nonperturbative divergences preclude
counterterm algorithms from being at work. Possible ways out and the reasonable aspects
of some approaches were also briefly addressed. The notions revealed here could well be
applied to wider range of physical systems that are dominated by singular short-distance
interactions.
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